Numerical Solution of Differential Riccati Equations Arising in Optimal Control for Parabolic PDEs

نویسندگان

  • Hermann Mena
  • Peter Benner
چکیده

The numerical treatment of linear-quadratic regulator problems on finite time horizons for parabolic partial differential equations requires the solution of large-scale differential Riccati equations (DREs). Typically the coefficient matrices of the resulting DRE have a given structure (e.g. sparse, symmetric or low rank). Here we discuss numerical methods for solving DREs capable of exploiting this structure. These methods are based on a matrix-valued implementation of the BDF methods. The crucial question of suitable stepsize and order selection strategies is also addressed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Parameter Selection Problem in the Newton-adi Iteration for Large Scale Riccati Equations

The numerical treatment of linear-quadratic regulator problems for parabolic partial differential equations (PDEs) on infinite time horizons requires the solution of large scale algebraic Riccati equations (ARE). The Newton-ADI iteration is an efficient numerical method for this task. It includes the solution of a Lyapunov equation by the alternating directions implicit (ADI) algorithm in each ...

متن کامل

Solving Sparse Differential Riccati Equations on Hybrid CPU-GPU Platforms

The numerical treatment of the linear-quadratic optimal control problem requires the solution of Riccati equations. In particular, the differential Riccati equations (DRE) is a key operation for the computation of the optimal control in the finite-time horizon case. In this work, we focus on large-scale problems governed by partial differential equations (PDEs) where, in order to apply a feedba...

متن کامل

THE COMPARISON OF EFFICIENT RADIAL BASIS FUNCTIONS COLLOCATION METHODS FOR NUMERICAL SOLUTION OF THE PARABOLIC PDE’S

In this paper, we apply the compare the collocation methods of meshfree RBF over differential equation containing partial derivation of one dimension time dependent with a compound boundary nonlocal condition.

متن کامل

Optimal Boundary Control & Estimation of Diffusion-Reaction PDEs

This paper considers the optimal control and optimal estimation problems for a class of linear parabolic diffusion-reaction partial differential equations (PDEs) with actuators and sensors at the boundaries. Diffusion-reaction PDEs with boundary actuation and sensing arise in a multitude of relevant physical systems (e.g. magneto-hydrodynamic flows, chemical reactors, and electrochemical conver...

متن کامل

On the Optimal Control of Some Parabolic Partial Differential Equations Arising in Economics

We review an emerging application field to parabolic partial differential equations (PDEs), that’s economic growth theory. After a short presentation of concrete applications, we highlight the peculiarities of optimal control problems of parabolic PDEs with infinite time horizons. In particular, the heuristic application of the maximum principle to the latter leads to single out a serious illpo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007